If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14x^2-41x+28=0
a = 14; b = -41; c = +28;
Δ = b2-4ac
Δ = -412-4·14·28
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-41)-\sqrt{113}}{2*14}=\frac{41-\sqrt{113}}{28} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-41)+\sqrt{113}}{2*14}=\frac{41+\sqrt{113}}{28} $
| 8+(x-5)+x=24 | | 5(x+4)-3(x+2)=-4 | | 5(x/3+9=75 | | -14.7=-2.2+v/5 | | 8+x-5+x=24 | | 8+x-5+x=25 | | u/3+3.1=-1.7 | | (4+x)/16=2+8x | | n-(-2.4)=1.20 | | 8*(x-5)=24 | | (-6x)=5x+22 | | 4(x–1)+7=3x–2 | | F(x)=3(x+6)-5 | | 7*9=(7*10)-(7*t) | | Y=3(x+6)-5 | | 2x-1(3-x)=5+6x | | 3x+2+7x=82 | | -5=4/3x-8 | | 7*9=(7*10)(7*t) | | 3x+1=4x-1=8x-4 | | -12.7=y/7-1.5 | | 8.9x-2.6=50.8 | | 2.2+y/4=-4.2 | | 3+9a=25+a3-5a | | 12x+19=x+35 | | 6y-3=-12-5(7-7) | | 2x2+x-15=0 | | w/6-2.3=-21.5 | | –3x+1+10x=x+4x=x=x=12x=18 | | 3x*2+(2x+1)=57 | | 1,5c+7=-5,5c+3 | | 10x+70=3x |